SEISMIC ISSUES IN PRECAST BUILDING CONSTRUCTION

Yogendra Singh, Professor
Department of Earthquake Engineering
Indian Institute of Technology Roorkee
NEED OF PRECAST CONSTRUCTION

• Conventional construction systems are time consuming due to rapid urbanization and population growth, it is difficult to satisfy housing demand with traditional construction systems.

• Forms used in a precast plant may be reused hundreds to thousands of times before they have to be replaced, which allow cost of formwork per unit to be lower than that for site-cast production.

• High strength, Quality, and Durability.

• Design flexibility and Aesthetic versatility.

• Wide range of colours, textures and shapes.
ISSUES IN PRECAST CONSTRUCTION

- Lifting and handling machines are required.
- High accuracy in construction, less margin for error.
- Connections between members are difficult and complicated.
- Monotonous type of design due to repetition of formwork.
- Skilled labor is required.
- Mostly one-way structural system due to limitation of panel size → Rigid diaphragm action is not available.
- Seismic Performance during past earthquakes has been questionable.
PHILOSOPHY OF EARTHQUAKE RESISTANT DESIGN

IS:1893-2002; Page 2 (Foreword):

“It is not intended in this standard to lay down regulation so that no structure shall suffer any damage during earthquake of all magnitudes. It has been endeavored to ensure that, as far as possible, structures are able to respond, without structural damage to shocks of moderate intensities and without total collapse to shocks of heavy intensities.”
PHILOSOPHY OF EARTHQUAKE RESISTANT DESIGN

V

Elastic Forces Reduced for Design by R

V_{\text{des}}

Inelastic Response

\triangle \text{yield}

\triangle \text{max}
INELASTIC ENERGY DISSIPATION

STRUCTURAL STEEL

11-Mar-16
INELASTIC ENERGY DISSIPATION

REINFORCED CONCRETE
INELASTIC ENERGY DISSIPATION

MASONRY

11-Mar-16
INELASTIC ENERGY DISSIPATION

WHAT ABOUT PRECAST CONCRETE CONSTRUCTION?
ROLE OF DUCTILITY

Effective Elastic Limit
Actual Resistance
Useful Limit of Displacement
Effective Yield Level
Actual Yield Point

$u_m = \omega u_Y$

Resistance

Displacement

11-Mar-16
ROLE OF DUCTILITY

\[F_E = \frac{\Delta m}{\Delta Y} = R \]

Seismic Force

\(F_Y \)

Elastic

Ductile

Displacement
ROLE OF DUCTILITY

Ductility results in the reduction of effective earthquake forces on the structure.

For long period systems: Equal displacement principle:
Reduction factor = ductility ratio

\[R = \mu \]
ROLE OF DUCTILITY

\[\mu = \frac{\Delta m}{\Delta Y} = \frac{(R^2 + 1)}{2} \]

Seismic Force

F_E

F_Y

Displacement

\(\Delta Y \)

\(\Delta m \)

Elastic

Ductile
For short period systems: Equal energy principle

Reduction factor is less than the ductility ratio

\[R = \sqrt{2\mu - 1} \]
RESPONSE REDUCTION FACTORS

<table>
<thead>
<tr>
<th>Description</th>
<th>Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Ordinary RC Moment resisting frames</td>
<td>3.0</td>
</tr>
<tr>
<td>2. Special RC moment resistant frames</td>
<td>5.0</td>
</tr>
<tr>
<td>3. Steel frames with concentric braces</td>
<td>4.0</td>
</tr>
<tr>
<td>4. Steel frames with eccentric braces</td>
<td>5.0</td>
</tr>
<tr>
<td>5. Un-reinforced masonry buildings</td>
<td>1.5</td>
</tr>
<tr>
<td>6. Masonry buildings with horizontal RC Bands</td>
<td>2.5</td>
</tr>
<tr>
<td>7. Masonry buildings with horizontal RC Bands and vertical reinforcement</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>RESPONSE REDUCTION FACTORS</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>8</td>
<td>Ordinary RC shear walls : 3.0</td>
</tr>
<tr>
<td>9</td>
<td>Ductile shear walls : 4.0</td>
</tr>
<tr>
<td>10</td>
<td>Ordinary shear walls with OMRF : 3.0</td>
</tr>
<tr>
<td>11</td>
<td>Ordinary shear walls with SMRF : 4.0</td>
</tr>
<tr>
<td>12</td>
<td>Ductile shear walls with OMRF : 4.5</td>
</tr>
<tr>
<td>13</td>
<td>Ductile shear walls with SMRF : 5.0</td>
</tr>
</tbody>
</table>
DUCTILITY IN CONCRETE (!?)

1. Circular hoops or spiral
2. Rectangular hoops with cross ties
3. Overlapping rectangular hoops

11-Mar-16
DUCTILITY IN CONCRETE (!?)

![Graph showing load-strain relationship for concrete columns]

- **Axial load in concrete** vs. **Average column strain**
- Theoretical compressive strength (f_c) plotted against strain for different specimens labeled A, B, C, and D.
- S (mm) values: 29, 38, 25, 29
- ρ_w values: 0.016, 0.017, 0.015, 0.017

11-Mar-16
CAPACITY DESIGN PHILOSOPHY

Brittle Links Ductile Link Brittle Links

\[
P_i > P_e / \phi
\]

Brittle Links + Ductile Link + Brittle Links

(a) (b) (c)

\[
\Delta_1 + \Delta_2 + \Delta_1 + \Delta_2
\]

\[
\mu = \frac{(n + \mu_2)}{(n + 1)}
\]

11-Mar-16
CAPACITY DESIGN PHILOSOPHY

Local failure mode is undesirable
11-Mar-16

Weak beam and strong column design is desirable
• Prefabricated elements (pre-stressed or conventionally reinforced) are used for framing structures

• Elements are assembled by equivalent monolithic and hinged joints or other types of welded and bolted connections.

• Absence of continuity and redundancy in these precast structures, has caused concern about the stability and ability to resist high lateral loads induced by strong earthquakes.

• Challenge ➔ Reliable and economic method to join prefabricated members
Equivalent monolithic system:
Emulation of monolithic reinforced concrete connections; resulting structural systems have strength and stiffness characteristics equivalent to those for monolithic reinforced concrete construction. In-situ (wet) connections are used to join the elements.

Jointed system:
In this system precast elements are interconnected predominately by dry joints.
WET VS. DRY CONNECTION

Figure 4: A typical connections at exterior beam column joints and connection elements

Equivalent monolithic system

Jointed System
Connections are weaker than the adjacent precast concrete elements. The connections between precast concrete elements of jointed system can be subdivided into two categories:

a) Connections of Limited Ductility:

- Formed by welding or bolting reinforcement bars or plates or steel embedment and dry-packing and grouting.
- These joints do not behave as part of monolithic construction and have limited ductility.
- Structure are designed for elastic behavior.
(b) Ductile connection:

- Unbonded post-tensioned tendons are used to connect the precast units together.
- Non-linear deformation occurs at interface of elements, where crack opens and closes.
- The unbonded post-tensioned tendons remain in elastic range.
- These connection have advantage of reduced damage and self-centering (i.e. practically no residual deformation) after an earthquake.
JOINTED SYSTEM (DRY CONNECTION)

MULTILEVEL CAR PARK, INFOSYS, HINJEWADI, PUNE. (Sachin et. al.)
JOINTED SYSTEM (DRY CONNECTION)
JOINTED SYSTEM (DUCTILE DRY CONNECTION)

JOINTED SYSTEM DURING EARTHQUAKE

http://www3.nd.edu/~concrete/1999_duzce_earthquake_reconnaissance/precast.html
JOINTED SYSTEM DURING EARTHQUAKE
JOINTED SYSTEM DURING EARTHQUAKE

http://www3.nd.edu/~concrete/1999_duzce_earthquake_reconnaissance/precast.html
JOINTED SYSTEM DURING EARTHQUAKE

Bhuj Earthquake 2001
JOINTED SYSTEM DURING EARTHQUAKE

Bhuj Earthquake 2001
JOINTED SYSTEM DURING EARTHQUAKE

Bhuj Earthquake 2001
• Equivalent monolithic system is also known as wet connections.

• Due to limitation of “Dry” connections, “Wet” cast-in-place reinforced concrete, or post-tensioned joints are most preferred.

• “Wet” connection show excellent performance during earthquakes, they tend to behave monolithically, provide continuity and higher redundancy, and add to the structural integrity.
Subdivided into two categories:

(a) Strong Connection of Limited Ductility:

- Longitudinal dowels of precast unit are connected by lap splice in a cast-in-place concrete joint or by non-contact lap splice with grouted steel corrugated duct or by splice sleeves or by welding or by mechanical connectors.

- This type of connections are achieved by capacity design approach, which ensures that flexural yielding occurs away from connections.
(b) Ductile connection:

This type of connections are designed for required strength, longitudinal bars or grouted post-tensioned tendons in the connection region expected to enter the post-elastic range in a severe earthquake.
EQUIVALENT MONOLITHIC SYSTEM

http://www.emekprefabrik.com/eng/our-construction-system.html
EQUIVALENT MONOLITHIC SYSTEM
EQUIVALENT MONOLITHIC SYSTEM

Peripheral Column-beam joint

Interior Column-beam joint
EQUIVALENT MONOLITHIC SYSTEM
LESSONS LEARNT FROM PREVIOUS EARTHQUAKES

• Precast construction has many advantages over conventional construction systems, but there are also many areas where it does not perform well. One major area where precast concrete does not perform well is with seismic loading.

• Due to poor behaviour of precast structures during earthquakes throughout the world, precast is viewed as unsuitable for resisting earthquakes.

• Most of the earthquake related precast construction failures have occurred due to poor design, deficient diaphragm action, inadequate detailing, and/or deformation issues.

• Due to lack of understanding of the basic nature of seismic behaviour, the precast concrete structure are viewed with skepticism in seismic regions.
LESSONS LEARNT FROM PREVIOUS EARTHQUAKES

• All equivalent monolithic reinforced concrete construction systems and Column-to- Column and Beam-to-beam Connections tested in Japan and New Zealand under simulated seismic loading, found behaving well as if cast-in-place construction.
TURNING CHALLENGE INTO OPPORTUNITY!

Use the connections between different components for dissipation of energy

→ Innovative energy dissipation devices
ENERGY DISSIPATION BY CONNECTIONS

Hybrid structural wall system (Priestley et al. 1999)
HYBRID STRUCTURAL WALLS
Thank You !