CONNECTIONS IN PRECAST STRUCTURES

Dr.K.P.Jaya
Professor
Anna University, Chennai

Historic representation of Precast in INDIA

IOB Building, Chennai, 1959

Present Day presence of Precast Structure in INDIA

Present Day presence of Precast Structure in INDIA

Present Day presence of Precast Structure in INDIA

PERFORMANCE OF PRECAST STRUCTURES UNDER EARTHQUAKE LOADING

Northridge earthquake - 1994

Precast parking structures

Adana-Ceyhan (Turkey) Earthquake - 1998

Precast Factories

Bhuj Earthquake - 2001

School Building

Baja Earthquake - 2010

OBSERVATIONS

Structural Elements were intact

- Joints and Connections failed due to inadequate detailing
- This particular aspect attracts the attention of researchers

MAJOR ISSUE

Poor Connections

NEED MORE ATTENTION

CONNECTIONS

Column - Foundation

Wall - Foundation

Beam - Column

Column - Column

Beam - Slab

Wall - Wall

COLUMN TO FOUNDATION

Mechanical Splices Connection

In situ Socket Foundation

COLUMN TO FOUNDATION

Mechanical Splices Connection

COLUMN TO FOUNDATION

Base Plate Connection

WALL PANEL TO FOUNDATION

Wall Panel to Foundation using screwed anchors

WALL PANEL TO FOUNDATION

Wall Panel to Foundation Using Couplers

WALL PANEL TO FOUNDATION

Foam Wall panel to foundation

Without Corbel

Connections with dowels

Connections with Mechanical Couplers

SEISMIC RESISTANT CONNECTIONS

Method: splice the beam bottom bars using anchorages in the joint core

With Corbel

Details of Interior Joint With Corbel

Hybrid / Emulative Connections

Cast – In – situ and corbel Connection

End Connections of Beams to the Corbels

Hybrid Connections

Plan view of the end connection

Cross section of columns

Sectional view of interior connection

Courtesy: B.G Shirke

Hybrid Connections

Longitudinal View

Courtesy: B.G Shirke

Hybrid Connections – with Shell Beams

Hybrid Connections – with Shell Beams

Mechanical Connections

TYPICAL BEAM - COLUMN CONNECTION

Mechanical Connection
Billet Connection

Design Aspects

Design Aspects

COLUMN – COLUMN CONNECTION

SPLICE SLEEVE

COLUMN – COLUMN CONNECTION

COLUMN – COLUMN CONNECTION

BOLTED CONNECTIONS

SLAB – WALL CONNECTION

SLAB – WALL CONNECTION

SLAB – WALL CONNECTION

Use of Rebars

STAIRCASE TO SLABS

STAIRCASE TO SLABS

STAIRCASE TO SLABS

Primary Inserts

Loop-Type Wire Inserts

Primary Inserts

Open Wire Inserts

Receptacles for Wire Inserts

Secondary Inserts

Used for Handling Purpose

INSERTS

Panel Lifting

Edge lifting connectors

INSERTS

Lifting loops

Lift up Links

CONNECTING SHOES

Column Shoes

Beam Shoes

Wall Shoes

RESEARCH IN PROGRESS AT ANNA UNIVERSITY

J-bolt (PC-JB)

Tie Rod (PC-TR)

Cleat Angle (PC-CL) R.Vidjeapriya

Cleat Angle with Single Stiffener (PC-SS)

R.Vidjeapriya

Cleat Angle with Double Stiffener (PC-DS)

R.Vidjeapriya

Dowel Bar (PC-DW)

Dowel and Cleat Angle (PC-DWCL)

R.Vidjeapriya

Experimental Investigation

Displacement (mm)

R.Vidjeapriya

Analytical Investigation

CURRENT PROJECTS

- Beam Column Hybrid Connections- Ms.Rajeswari
- Column Foundation Connections Ms.Hemamathi
- Shear Wall Slab Connections Ms.Arthi
- Wall Panel Connections Mr.Joyson

ICI HANDBOOK

