Structural Issues in Prefabricated Buildings

Dr. A.K. Mittal,
Group Leader, SE Division
on Behalf of Team CSIR-CBRI

CSIR – Central Building Research Institute
Roorkee – 247667, Uttarakhand, India
Prefabrication is the practice of casting components of a structure in a factory or other manufacturing site, and transporting complete assemblies or sub-assemblies to the construction site where the structure is to be erected.

Need for Prefabrication
- Structural efficiency
- Cost Control
- Optimum use of materials
- Speed of construction
- Quality consciousness
- Adaptability
- Protection of the environment
Outline

1. Scenarios

2. Structural Failures

3. Design Concept for Precast Buildings

4. Structural Issues

5. Joints

6. Installation Issues

7. Constructional Issues

8. Life Cycle Design Concept

9. Conclusion
1. International Scenario

- Volumetric Technology
- Panelised Technology
- Light Gauge Galvanized Tech.
- Hybrid Technology

INTERNATIONAL SCENARIO
National Scenario

Monolithic Concrete Construction System

Pre-Stressed Precast Hollow Core Tech.

Industrialized 3-S System

EPS Core Panel System

GFRG Building System

NATIONAL SCENARIO
2. Structural Failures

Collapse of precast concrete parking structure due to pounding against adjacent structure in Mexico City, 1985

Michoacán Earthquake (due to inadequate separation)

Collapse of precast buildings in Tangshan, China 1976

Ref: fib bulletin 27
Structural Failures contd.

Collapse of Precast Concrete Hollow Core Floor; 1994 Northridge Earthquake, California

Failure of Flexible light-gauge metal diaphragm; 1999 Kocaeli Earthquake, Turkey

Ref: fib bulletin 27
Failure of a poorly detailed beam-column connection (1976 Tangshan Earthquake, China)

Failure of a poorly detailed beam-column connection (1976 Tangshan earthquake, China)

Ref: fib bulletin 27

Beam-Column joints of moment – resisting frames with precast have often failed in earthquakes due to poor details.
3. Design concept for precast concrete buildings

The design concept of the precast buildings is based on

- Buildability
- Economy
- Standardization of precast components.

Isometric View

Friday, 11 March 2016
Precast concrete structural elements

Precast slabs

Precast Beam & Girders
Precast concrete structural elements...contd.
Precast concrete structural elements...contd.

Precast stairs

Precast concrete Stairs

Steel plates supported on 2 steel beams
4. Structural Issues

- Limited research on different types of precast structural systems.

- In code-based design of structures to resist earthquake loads, one needs to determine the response reduction factor (R).

- R factor would have different values for different types of precast buildings depending on their proven performances.

- Less flexible against future structural modifications.
<table>
<thead>
<tr>
<th>COUNTRY</th>
<th>CODES</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Zealand</td>
<td>Standards New Zealand 1995 covers many aspects of seismic designs, Pre cast R.C. structures</td>
</tr>
<tr>
<td>U.S.A.</td>
<td>Design Guides and Manuals by Precast/ Pre-stressed Concrete Institute</td>
</tr>
<tr>
<td>Canada</td>
<td>CPCI (Canadian Pre-stressed Research Institute) Design Handbook; NBCC (National Building Code of Canada)</td>
</tr>
<tr>
<td>Japan</td>
<td>Design and construction of Precast R.C. buildings by AIJA (Architectural Institute of Japan)</td>
</tr>
<tr>
<td>Mexico</td>
<td>Mexico City Building Code.</td>
</tr>
</tbody>
</table>
Further Structural Issues

- Inadequate Diaphragm Action
- Vulnerable in seismic prone areas due to semi rigidity at joints
- Issues due to different foundation level
- Issues due to changes in design plans during construction (not recommended).
5. Joints

- Problem faced by the precast industry is finding a reliable and economic method to join prefabricated members.
- Locations of high stress are weak point in structural system.
- Types of joint connection:
 - **Dry Connections** - Must be designed as strong connection maximum height of 18 m or 4 storeys is allowed.
 - **Wet Connections** - Must satisfy ACI-318-11 specially for anchorages and splices.

Ref: Englekirk 2003
Edilmatic system components for typical beam-column joints in precast reinforced concrete structures

(Ref: Metelli G 2008)
Typical Precast Beam-Column Wet Joint

Cast-in-situ Concreting

(Ref: Emek Prefabrik)
Floor-to-floor Connections for Precast Structures

- Cast-In-Situ Topping
- Bolted Steel Joints
- Floor-to-floor Joints
- Cast-In-Situ Joints
- Welded Steel Joints

Ref: Paulo Negro 2012
Floor-to-beam Connections for Precast Structures

- Supports With Steel Shoes
- Supports With Steel Angles
- Welded Supports
- Cast-in-situ Joints
- Hybrid Connections

Ref: Paulo Negro 2012
Beam-to-column Connections for Precast Structures

- Cast-in-situ connections
- Hybrid connections
- Connections with dowels
- Connections with mechanical couplers

Ref: Paulo Negro 2012
Column-to-foundation Connections for Precast Structures

- Foundations with protruding bars
- Connections with bolted sockets
- Connections with bolted flanges
- Pocket foundations
- Connections with mechanical couplers

Ref: Paulo Negro 2012
Joint Issues

- Adequate joints to transfer diaphragm forces

- The joints of the core structure and the components should be strong to transfer tension compression and vertical loads.

- FE modeling of precast buildings is complicated because of the variety of joint and support types with unknown load-deformation properties.

- Joints must have adequate strength to transfer gravity and lateral load between panels.

- If joints are not well accomplish it results in leakage.
6. Erection and Installation Issues

- Damages during erection or transportation.
- Heavy machineries are required for large size prefabrication.
- Difficulty in transportation of precast components.
- Aligning of heavy precast components becomes difficult at site.
- Erection and installation becomes very cumbersome in crowded area.
Installation of a Slab
7. Construction Issues

- Requirement of skilled labour at site.
- Lack of onsite automation in the construction sector.
- Durability aspects due to leakage problem.
- General maintenance manual of these structures is extremely challenging.
8. Life Cycle Design Concept

- Design for deconstruction
- Flexible and demountable precast building systems would result in efficient use of resources
- Inventory of relevant energy and material inputs and environmental releases
- Repair and maintenance
9. Conclusions

- Government of India’s ambitious Mission of “Housing for ALL by 2022” can only see the light of the day using prefab technologies in the housing sector.

- The partial prefabrication technologies developed by CSIR-CBRI has been successful in rural areas and has been implemented at a large scale in various housing projects.

- The quality achieved in construction using CBRI technologies has been proved to be better.

- There is a need for development of training modules, quality control/assurance guidelines including general maintenance requirements, SOR etc.
Conclusions

- Research need to carried put for identifying the response reduction factor (R) for different precast structural systems.

- For wide acceptability design codes are needed to be formulated for different precast structural systems.

- R & D in automation for construction sector needs to be encouraged for greater acceptability of precast structural system.
Reference

2. fib bulletin 27, Fédération internationale du béton, Seismic design of Precast concrete building structure.

3. Metelli G., Riva P., Behaviour of a beam to column “dry” joint for precast Concrete elements, *The 14th World Conference on Earthquake Engineering*, October 12-17, 2008, Beijing, China

Thank You